The realization space is [1 1 1 0 0 1 1 x1 - 1 0 x1 - 1 x1 - 1] [1 x1 0 1 0 1 x1 0 x1 - 1 -x1 -x1] [0 0 0 0 1 1 x1 x1^2 - 3*x1 + 1 -x1 x1^2 - 3*x1 + 1 x1^2 - x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (x1^3 - 5*x1^2 + 4*x1 - 1, x1^11 - 11*x1^10 + 37*x1^9 - 50*x1^8 + 31*x1^7 - 9*x1^6 + x1^5) avoiding the zero loci of the polynomials RingElem[2*x1 - 1, x1^2 - 5*x1 + 2, x1, 2*x1^4 - 10*x1^3 + 9*x1^2 - 4*x1 + 1, x1^4 - 5*x1^3 + 4*x1^2 - 3*x1 + 1, x1^2 - 4*x1 + 1, x1^3 - 5*x1^2 + 3*x1 - 1, 2*x1^3 - 10*x1^2 + 7*x1 - 1, x1 - 1, x1^2 - 3*x1 + 1, 3*x1^4 - 16*x1^3 + 16*x1^2 - 6*x1 + 1, x1^4 - 4*x1^3 - 2*x1^2 + 4*x1 - 1, 3*x1^3 - 16*x1^2 + 15*x1 - 4, x1^4 - 4*x1^3 - 3*x1^2 + 6*x1 - 2, x1^3 - 4*x1^2 + 1, x1 - 2, x1^2 - 4*x1 + 2, 2*x1^3 - 9*x1^2 + 4*x1 - 1, x1^2 - 4*x1 - 1, 2*x1^2 - 9*x1 + 3, x1^3 - 4*x1^2 - 2*x1 + 1, x1^3 - 5*x1^2 + 2*x1 - 1, x1^2 - 5*x1 + 3, x1 - 4]